Multiple linear regression model for bromate formation based on the survey data of source waters from geographically different regions across China


摘要

A total of 86 source water samples from 38 cities across major watersheds of China were collected for a bromide (Br−) survey, and the bromate (BrO3−) formation potentials (BFPs) of 41 samples with Br− concentration >20 $μ$g L−1 were evaluated using a batch ozonation reactor. Statistical analyses indicated that higher alkalinity, hardness, and pH of water samples could lead to higher BFPs, with alkalinity as the most important factor. Based on the survey data, a multiple linear regression (MLR) model including three parameters (alkalinity, ozone dose, and total organic carbon (TOC)) was established with a relatively good prediction performance (model selection criterionþinspace=þinspace2.01, R2þinspace=þinspace0.724), using logarithmic transformation of the variables. Furthermore, a contour plot was used to interpret the influence of alkalinity and TOC on BrO3− formation with prediction accuracy as high as 71 %, suggesting that these two parameters, apart from ozone dosage, were the most important ones affecting the BFPs of source waters with Br− concentration >20 $μ$g L−1. The model could be a useful tool for the prediction of the BFPs of source water.

出版物
Environmental Science and Pollution Research
于建伟
于建伟
副研究员
苏命
苏命
副研究员

我的研究方向:水源地水质安全保障,主要针对水源地由于藻类爆发引起的水体嗅味问题开展研究。

杨敏
杨敏
研究员, 中国科学院生态环境研究中心副主任
comments powered by Disqus

相关